Studying the growth of Mordell - Weil
نویسندگان
چکیده
We study the growth of the Mordell-Weil groups E(Kn) of an elliptic curve E as Kn runs through the intermediate fields of a Zp-extension. We describe those Zp-extensions K∞/K where we expect the ranks to grow to infinity. In the cases where we know or expect the rank to grow, we discuss where we expect to find the submodule of universal norms. 2000 Mathematics Subject Classification: Primary 11G05, 11G40; Secondary 11R23, 14G05
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملSelmer groups and Mordell-Weil groups of elliptic curves over towers of function fields
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
متن کاملMordell-Weil growth for GL2-type abelian varieties over Hilbert class fields of CM fields
Let A be a modular abelian variety of GL2-type over a totally real field F of class number one. Under some mild assumptions, we show that the Mordell-Weil rank of A grows polynomially over Hilbert class fields of CM extensions of F .
متن کاملRigid Lattices Are Mordell-weil
We say a lattice Λ is rigid if it its isometry group acts irreducibly on its ambient Euclidean space. We say Λ is Mordell-Weil if there exists an abelian variety A over a number field K such that A(K)/A(K)tor, regarded as a lattice by means of its height pairing, contains at least one copy of Λ. We prove that every rigid lattice is Mordell-Weil. In particular, we show that the Leech lattice can...
متن کامل